Factorise:x4 - (y + z)4 from Mathematics Factorisation Class 8
zigya tab

Factorise the expressions.
6xy - 4y + 6 - 9x


Regrouping the terms, we have

          6xy - 4y + 6 - 9x = 6xy - 4y - 9x + 6

                                  = 2y[3x - 2] - 3[3x - 2]

                                  = (3x - 2)[2y - 3]

363 Views

Factorise:
a4 - 2a2b2 + b4


∵   a4 - 2a2b2 + b4 = (a2)2 - 2(a2)(b2) + (b2)2

                                  
= (a2 - b2)2

                          = [(a2 - b2) (a2 + b2)]

                          = [(a - b) (a + b) (a2 + b2)]

∴    a4 - 2a2b2 + b4 = (a - b)(a + b)(a2 + b2)

411 Views

Advertisement

Factorise:
x4 - (y + z)4


∵   x4 - (y + z)4 = [x2]2 - [(y + z)2]2

                       = [(x2) + (y + z)2] [(x2) - (y + z)2]
                                                
                                                     [Using a2 - b2 = (a+b)(a-b)]

We can factorise [x2 - (y + z)2] further as

       x2 - (y + z)2 = [(x) + (y + z)][(x) - (y + z)]

                         = (x + y + z)(x - y - z)

∴      x4 - (y + z)4 = (x + y + z)(x - y - z)[x2 + (y + z)2]







     

825 Views

Advertisement

Factorise:
space space straight a to the power of 4 space minus space straight b to the power of 4


Using              a2 - b2 = (a - b) (a + b), we have

                     a4 - b4= (a2)2 - (b2)2

                               = left parenthesis straight a squared space plus space straight b squared right parenthesis left parenthesis straight a squared space minus space straight b squared right parenthesis

                              equals left parenthesis straight a squared space plus space straight b squared right parenthesis left square bracket left parenthesis straight a space plus space straight b right parenthesis space left parenthesis straight a space minus space straight b right parenthesis right square bracket

                              = left parenthesis straight a squared space plus space straight b squared right parenthesis(a + b)(a - b)
                              
                             

84 Views

Factorise:
p4 - 81


We have  p4 - 81 = (p2)2 - (92)2

Now using a2 - b2 = (a + b)(a - b), we have

         (p2)2 - (9)2 = (p2 + 9)(p2 -9)

We can factorise p2 - 9  further as
              p2 - 9 = (p)2 - (3)2

                       = (p + 3)(p - 3)

∴           p4 - 81 = (p + 3)(p - 3)(p2 + 9)

527 Views

Advertisement