Factorise the expressions.
6xy - 4y + 6 - 9x
Regrouping the terms, we have
6xy - 4y + 6 - 9x = 6xy - 4y - 9x + 6
= 2y[3x - 2] - 3[3x - 2]
= (3x - 2)[2y - 3]
Factorise:
a4 - 2a2b2 + b4
∵ a4 - 2a2b2 + b4 = (a2)2 - 2(a2)(b2) + (b2)2
= (a2 - b2)2
= [(a2 - b2) (a2 + b2)]
= [(a - b) (a + b) (a2 + b2)]
∴ a4 - 2a2b2 + b4 = (a - b)(a + b)(a2 + b2)
Factorise:
x4 - (y + z)4
∵ x4 - (y + z)4 = [x2]2 - [(y + z)2]2
= [(x2) + (y + z)2] [(x2) - (y + z)2]
[Using a2 - b2 = (a+b)(a-b)]
We can factorise [x2 - (y + z)2] further as
x2 - (y + z)2 = [(x) + (y + z)][(x) - (y + z)]
= (x + y + z)(x - y - z)
∴ x4 - (y + z)4 = (x + y + z)(x - y - z)[x2 + (y + z)2]
Factorise:
Using a2 - b2 = (a - b) (a + b), we have
a4 - b4= (a2)2 - (b2)2
=
= (a + b)(a - b)